Data Science Knowledge Base: Unterschied zwischen den Versionen

Aus MattWiki
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 9: Zeile 9:


= Exploratory Data Analysis =
= Exploratory Data Analysis =
<syntaxhighlight lang="python3" line="1">
See Jupyter Notebook: '''EDA-basic-recipe.ipynb''' <syntaxhighlight lang="python3" line="1">
# Load numpy and pandas libraries
# Load numpy and pandas libraries
import numpy as np
import numpy as np
Zeile 55: Zeile 55:
We can also calculate the IQR as shown in the video:
We can also calculate the IQR as shown in the video:
  print (df["length_in_minutes"].quantile(0.75) - df["length_in_minutes"].quantile(0.25))
  print (df["length_in_minutes"].quantile(0.75) - df["length_in_minutes"].quantile(0.25))
== Bivariate Analysis ==
See Jupyter Notebook: '''Bivariate_Analsis.ipynb'''
== Introduction ==
Bivariate analysis can be used for:
* Exploring the relationship between two variables
* Comparing groups
* Testin hypotheses
* Predicting outcomes
Correlation between two variables is a statistical measure of the strength and direction between them
* Perfect positive correlation = -1
* Perfect negative correlation = -1
* No correlation = 0
== Correlation with Scatter Plot ==
A scatter plot can be used to visualize the relationship between two continous variables.
== Correlation using Pandas and Seaborn ==
<syntaxhighlight lang="python3" line="1">
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
iris = sns.load_dataset("iris")
print(iris.sample(10))
sns.pairplot(iris)
plt.show()
sns.pairplot(iris, hue="species", diag_kind='hist')
plt.show()
</syntaxhighlight>
[[Kategorie:Python]]
[[Kategorie:Python]]
[[Kategorie:Data Science]]
[[Kategorie:Data Science]]

Version vom 14. Dezember 2023, 18:43 Uhr

This article is a knowledge base with basics for how to start a data science project.

Sources:

Exploratory Data Analysis

See Jupyter Notebook: EDA-basic-recipe.ipynb

# Load numpy and pandas libraries
import numpy as np
import pandas as pd

# Read data from CSV file into a dataframe
df = pd.read_csv('911.csv')                

# Show informations about columns, and number and data type of their content
print(df.info())

# Show first and last rows and columns of the dataframe
print(df)

# Show first 10 columns of dataframe
print(df.head(10))

# Describe numerical columns of dataframe by showing their min, max, count, mean and other:
print(df.describe())

# Analyze columns of interest, i.e. ZIP code, title and timeStamp:
print(df["zip"].mean())
print(df["zip"].value_counts().head(10))
print(df["zip"].value_counts().tail(10))
print(df["zip"].nunique())
print(df["title"].nunique())
print(df["timeStamp"].min())
print(df["timeStamp"].max())

Finish the exploratory data analysis by writing a management summary containing gained knowledge about the dataset.

Handling Missing Data with Pandas

https://pandas.pydata.org/docs/user_guide/missing_data.html

Location and Dispersion Metrics

Location metrics:

df["*nameOfAColumn*"].mode()
df["*nameOfAColumn*"].mean()
df["*nameOfAColumn*"].median()  

Dispersion metrics:

df["length_in_minutes"].std()
df["length_in_minutes"].quantile(0.75)

We can also calculate the IQR as shown in the video:

print (df["length_in_minutes"].quantile(0.75) - df["length_in_minutes"].quantile(0.25))

Bivariate Analysis

See Jupyter Notebook: Bivariate_Analsis.ipynb

Introduction

Bivariate analysis can be used for:

  • Exploring the relationship between two variables
  • Comparing groups
  • Testin hypotheses
  • Predicting outcomes

Correlation between two variables is a statistical measure of the strength and direction between them

  • Perfect positive correlation = -1
  • Perfect negative correlation = -1
  • No correlation = 0

Correlation with Scatter Plot

A scatter plot can be used to visualize the relationship between two continous variables.

Correlation using Pandas and Seaborn

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns

iris = sns.load_dataset("iris")

print(iris.sample(10))

sns.pairplot(iris)
plt.show()
sns.pairplot(iris, hue="species", diag_kind='hist')
plt.show()